

OCW Integración de energías renovables en la red eléctrica Control de tensión en redes eléctricas Ejercicios de autoevaluación

Pablo Ledesma

¿Cuál es una razón para mantener una tensión aceptable en los nudos de una red?

- 1. Para entregar la energía en condiciones de calidad adecuadas
- 2. Para evitar desviaciones de frecuencia
- 3. Para mantener un desfase de 120 grados entre las tensiones de línea

En el modelo de línea corta de una línea aérea de transporte, entre la resistencia y la reactancia, ¿qué parámetro eléctrico es mayor?

- 1. La resistencia y la reactancia tienen un valor parecido.
- 2. La resistencia es significativamente mayor.
- 3. La reactancia es significativamente mayor.

¿Qué relación hay entre las tensiones y los flujos de potencia en una línea eléctrica

- 1. La potencia reactiva tiende a ir desde nudos con tensiones más altas, en KV, hacia nudos con tensiones más bajas.
- 2. La potencia reactiva tiende a ir desde nudos con tensiones más altas, en por unidad, hacia nudos con tensiones más bajas.
- 3. La potencia reactiva tiende a ir desde nudos con tensiones adelantadas hacia nudos con tensiones retrasadas.

¿Qué pasa si consumimos potencia reactiva en un nudo de una red eléctrica?

- 1. La tensión sube
- 2. La tensión baja
- 3. La tensión no se ve afectada significativamente

uc3m Universidad Carlos III de Madrid

En una línea de distribución donde la resistencia y la reactancia tienen un valor parecido, ¿qué ecuación representa de manera aproximada la caída de tensión en por unidad?

- 1. $V_1 V_2 \approx RX + PQ$
- 2. $V_1 V_2 \approx RP + XQ$
- 3. $V_1 V_2 \approx RQ + XP$

¿Qué es el Automatic Voltage Regulator (AVR)?

- 1. Un sistema de control de la potencia reactiva en las cargas.
- 2. Un sistema de control para regular la tensión en los generadores síncronos.
- 3. Un sistema de control distribuido en las subestaciones de la red de transporte.

¿Cómo controlan la tensión las máquinas síncronas?

- 1. A través de la corriente en el devanado de campo.
- 2. A través del par electromagnético.
- 3. A través de la corriente en el devanado inducido.

¿Qué es un compensador síncrono?

- 1. Un sistema coordinado de baterías de condensadores y bobinas.
- 2. Un sistema de control que ajusta periódicamente el intercambio de potencia reactiva.
- 3. Una máquina síncrona sin turbina ni fuente de energía primaria.

¿Qué servicio no es aportado por un compensador síncrono?

- 1. Aportación de corriente de cortocircuito.
- 2. Control continuo de tensión.
- 3. Producción de potencia activa.

¿Cuál de estas frases es cierta?

- 1. Las baterías de condensadores proporcionan un control continuo de la tensión.
- 2. Las baterías de condensadores inyectan armónicos en la red.
- 3. Las baterías de condensadores conectadas por dispositivos mecánicos provocan transitorios electromágnéticos.

uc3m Universidad Carlos III de Madrid

¿Cuánta	potencia	reactiva	genera	un	${\bf condensador}$	$d\epsilon$	susceptancia	B	= 0.4 p.u.	con
potencia	base $S_b =$: 100 MVA	y cone	ctac	do a la tensiór	n n	ominal?			

- 1. 40 Mvar
- 2. -4 Mvar
- 3. 0,4 Mvar

¿Cómo se cambia de una toma a otra en un transformador regulador de tensión?

- 1. Rápidamente, aprovechando un paso por cero de la corriente.
- 2. Rápidamente y sin interrumpir la corriente.
- 3. Despacio y en cada una de las tres fases sucesivamente.

¿Cuál es un margen típico de variación de la tensión en un transformador de potencia con cambio de tomas?

- $1. \pm 10\%$
- $2.\ \pm 110\,\%$
- $3. \pm 100 \%$

¿Cómo se conectan los dos devanados de un autotransformador regulador?

- 1. Uno en paralelo (entre la entrada y tierra) y otro en serie (entre la entrada y la salida).
- 2. Uno entre fase y tierra y otro entre fase y fase.
- 3. Ambos en paralelo (entre la entrada y tierra y entre la salida y tierra).