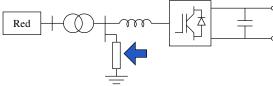


OCW Integración de energías renovables en la red eléctrica Contribución de parques al control de tensión Ejercicios de autoevaluación

Pablo Ledesma

¿Cuál de las siguientes características es una ventaja del control de tensión desde convertidores electrónicos?

- 1. Aporta corriente de cortocircuito
- 2. Es rápido
- 3. Reduce las pérdidas


¿Cuál de las siguientes características no es una ventaja del control de tensión desde convertidores electrónicos?

- 1. No provoca transitorios electromagnéticos
- 2. Es continuo
- 3. Inyecta armónicos

¿Cómo se llama la tecnología más empleada en los convertidores electrónicos de los parques eólicos y fotovoltaicos?

- 1. VCS, Variable-Current System
- 2. SVC, Static-Voltage Compensator
- 3. VSC, Voltage-Soure Converter

En este esquema de un convertidor de tipo VSC, ¿qué es el elemento señalado con una flecha?

- 1. Una resistencia
- 2. Un descargador
- 3. Un filtro

uc3m Universidad Carlos III de Madrid

¿Qué alternativa de control de un convertidor electrónico requiere conocer el ángulo de la tensión en la red?

- 1. El control grid-locking
- 2. El control grid-following
- 3. El control grid-forming

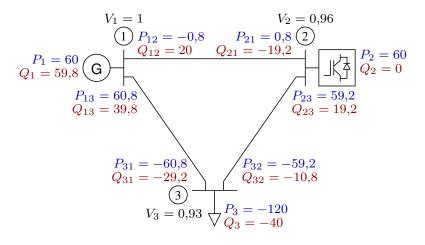
¿Cómo se comporta desde el punto de vista de la red un convertidor con control de corriente directa y en cuadratura a la frecuencia fundamental?

- 1. Como una fuente de tensión
- 2. Como una fuente de corriente
- 3. Como una impedancia

¿Cómo se controla la tensión de la red en un convertidor con control de corriente directa y en cuadratura?

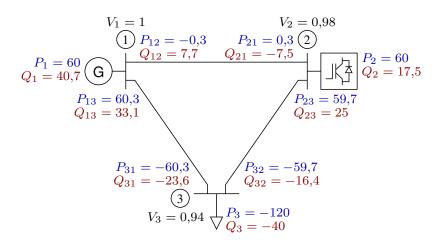
- 1. Con la componente en cuadratura de la corriente
- 2. Con la magnitud de la corriente
- 3. Con la componente directa de la corriente

¿Cómo se comporta desde el punto de vista de la red un convertidor con control de tipo grid-forming?


- 1. Como una fuente de tensión
- 2. Como una impedancia
- 3. Como una fuente de corriente

¿Qué relación hay entre la potencia reactiva máxima Q_{max} que puede intercambiar con la red un convertidor y la potencia activa P que inyecta?

- 1. $Q_{max} = \pm V I_{max}/P$
- 2. $Q_{max} = \pm \sqrt{V^2 I_{max}^2 P^2}$
- 3. $Q_{max} = \pm (1 P)$


uc3m Universidad Carlos III de Madrid

En el sistema de la figura, ¿con qué factor de potencia actúa el parque conectado en el nudo 2?

- 1. f.d.p. = 0
- 2. f.d.p. = 1
- 3. f.d.p. $= \infty$

En el sistema de la figura el parque conectado al nudo 2 está inyectando 17,5 Mvar de potencia reactiva. Esta inyección de potencia reactiva, ¿qué efecto tiene sobre el sistema?

- $1.\$ Reduce la tensión del nudo 2 y eleva la aportación de potencia reactiva del generador en el nudo 1
- 2. Eleva la tensión del nudo 2 y reduce la aportación de potencia reactiva del generador en el nudo 1
- 3. Reduce la tensión del nudo 2 y reduce la aportación de potencia reactiva del generador en el nudo 1 $\,$

uc3m | Universidad Carlos III de Madrid

¿Cómo se comportan las líneas eléctricas respecto al consumo o generación de potencia reactiva?

- 1. Consumen potencia reactiva si están muy cargadas, y generan potencia reactiva si están poco cargadas
- 2. Generan potencia reactiva
- 3. Consumen potencia reactiva

\mathcal{E} Cómo suelen evolucionar las tensiones en los nudos de carga de una red de transporte?

- 1. Las tensiones tienden a subir por el día y a bajar por la noche
- 2. Las tensiones tienden a subir por la mañana y a bajar por la tarde
- 3. Las tensiones tienden a bajar por el día y a subir por la noche