

OCW Integración de energías renovables en la red eléctrica Estabilidad Transitoria en Sistemas con Generación Renovable Ejercicios de

Francisco Arredondo

autoevaluación

¿Qué se entiende por estabilidad transitoria en un sistema eléctrico?

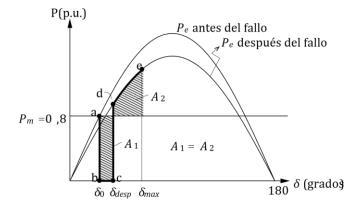
- 1. Es la capacidad del sistema para recuperar la frecuencia de sincronismo después de una perturbación.
- 2. Se define por la capacidad de los generadores síncronos de un sistema eléctrico para mantener el sincronismo tras ser sometidos a una perturbación severa.
- 3. Es la capacidad del sistema para restaurar el equilibrio inicial entre generación y demanda tras ser sometido a una perturbación severa.

¿Cómo se suele estudiar la estabilidad transitoria en los sistemas eléctricos modernos?

- 1. Mediante la aplicación del criterio de igualdad de áreas.
- 2. Mediante el uso de programas de simulación de transitorios electromecánicos.
- 3. Mediante el uso de programas de simulación de transitorios electromagnéticos.

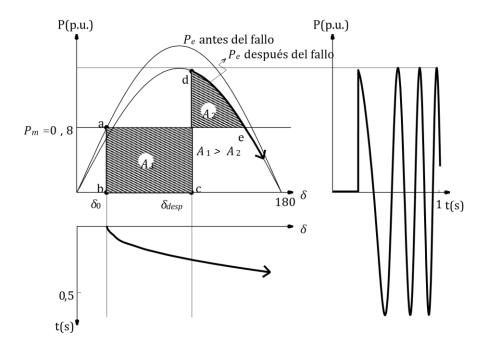
La constante de inercia H de una máquina síncrona representa:

- 1. La energía cinética acumulada en el eje de una máquina síncrona cuando está girando a la velocidad de síncronismo dividida entre su potencia base.
- 2. La cantidad de energía eléctrica que una máquina síncrona puede entregar instantáneamente cuando se produce una perturbación severa en la red eléctrica.
- 3. El tiempo necesario para que una máquina se sincronice con la frecuencia de la red eléctrica que suele expresarse en segundos.

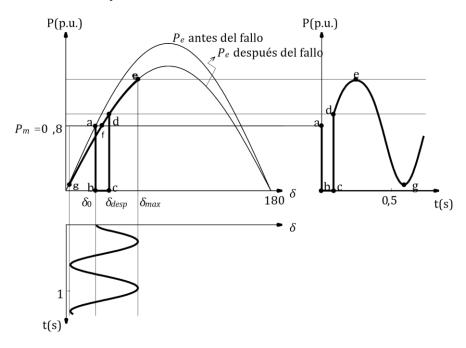

Señale la respuesta correcta sobre el criterio de igualdad de áreas:

- 1. Es un método gráfico para evaluar la estabilidad transitoria, aplicable solo a sistemas eléctricos sencillos.
- 2. Su aplicación requiere la resolución de las ecuaciones diferenciales que rigen la dinámica de los generadores y de la red de transporte en un sistema eléctrico.
- 3. Es el método que suelen implementar las herramientas de simulación de transitorios electromagnéticos para evaluar la estabilidad transitoria.

uc3m Universidad Carlos III de Madrid

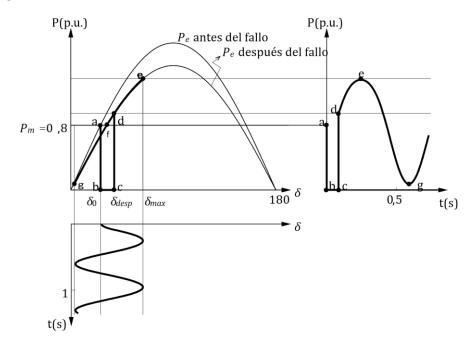

La siguiente imagen muestra la aplicación del criterio de igualdad de áreas a un ejemplo sencillo. Señala la afirmación correcta:

- 1. El caso es inestable, ya que la potencia eléctrica entregada por el generador cae a 0 durante la falta.
- 2. El punto c marca el ángulo de carga δ en el que las protecciones actúan y despejan la falta.
- 3. El caso es estable y la intersección marcada como d representa el nuevo punto de equilibrio que se alcanzará tras la perturbación.


La siguiente imagen muestra la aplicación del criterio de igualdad de áreas a un ejemplo sencillo. Señala la afirmación correcta:

- 1. El caso es inestable, ya que el ángulo de carga supera la intersección por la derecha entre la recta horizontal que representa la potencia mecánica y la sinusoide de potencia eléctrica después del fallo.
- 2. El caso es inestable, ya que la potencia eléctrica vertida por el generador cae a 0 durante la falta.
- 3. El caso es estable y la intersección marcada como d representa el nuevo punto de equilibrio que se alcanzará tras la perturbación.

La siguiente imagen muestra la aplicación del criterio de igualdad de áreas a un ejemplo sencillo. Señala la afirmación correcta:


- 1. El caso es inestable, ya que la potencia eléctrica entregada por el generador cae a 0 durante la falta.
- 2. El punto e marca el ángulo de carga δ en el que las protecciones actúan y despejan la falta.
- 3. El caso es estable y la intersección marcada como f representa el nuevo punto de equilibrio que se alcanzará tras la perturbación.

uc3m Universidad Carlos III de Madrid

La siguiente imagen muestra la aplicación del criterio de igualdad de áreas a un ejemplo sencillo. Señala la afirmación correcta:

- 1. El caso es inestable, ya que las oscilaciones del ángulo de carga δ no se amortiguan.
- 2. El punto b marca el ángulo de carga δ en el que las protecciones actúan y despejan la falta.
- 3. El caso es estable y la intersección marcada como e representa la desviación angular máxima que se alcanza.

Hay una serie de factores que afectan a la estabilidad transitoria en un sistema eléctrico. Señala la respuesta correcta:

- 1. Cuanto mayor es la inercia de una máquina, mayor será su aceleración ante un desequilibrio entre potencia mecánica y eléctrica.
- 2. Cuanto más cargado está un generador, el criterio de áreas demuestra que es más fácil que pierda el sincronismo.
- 3. Cuanto mayor sea el tiempo de despeje de una falta, mayor será la estabilidad del sistema.

uc3m Universidad Carlos III de Madrid

El efecto que tendrá la generación renovable conectada a través de convertidores sobre la estabilidad transitoria de un sistema depende de varios factores. Señala la respuesta correcta:

- 1. El incremento en la proporción de generación renovable conectada a la red a través de convertidores de potencia no tiene influencia sobre la dinámica de un sistema eléctrico ya que no se conectan mediante máquinas síncronas.
- 2. La ubicación de una perturbación, en relación con la generación conectada a través de convertidores y las grandes plantas eléctricas conectadas con máquinas síncronas, no tiene influencia en la respuesta del sistema y su capacidad para mantener la estabilidad.
- 3. Los convertidores de potencia, mediante controles avanzados, pueden emular el comportamiento de las máquinas síncronas, mejorando así la respuesta del sistema ante perturbaciones y contribuyendo a mantener la estabilidad.