

OCW Integración de energías renovables en la red eléctrica. Técnicas avanzadas de control en parques de energía renovable: Convertidores Grid Forming Ejercicios de autoevaluación

Francisco Arredondo

Señale la afirmación correcta sobre convertidores para conectar fuentes de generación renovable:

- 1. Su dinámica es diferente a la que presentan los generadores síncronos que han sido tradicionalmente empleados, teniendo esto consecuencias en la estabilidad de los sistemas eléctricos.
- 2. En paralelo a estos convertidores, siempre hay que conectar una gran masa que gire en sincronismo aportando inercia al sistema.
- 3. Son siempre necesarios para conectar centrales hidráulicas a red.

Señale la afirmación correcta sobre el comportamiento dinámico de un convertidor Grid Forming durante perturbaciones de frecuencia en una red débil:

- 1. Mantiene en todo momento constante la potencia activa y reactiva intercambiada.
- 2. Actúa como una fuente de corriente controlada.
- Modifica su frecuencia interna según la característica de droop o el modelo de máquina síncrona virtual para equilibrar la potencia activa intercambiada y sostener la estabilidad del sistema.

¿Cuál es una característica principal del control de un convertidor Grid following?

- 1. Utiliza un Phase-Locked Loop (PLL) para sincronizarse con la frecuencia y tensión de la red existente.
- 2. Genera de forma independiente la referencia de tensión y frecuencia de la red.
- 3. Capacidad de arranque en negro

¿En qué condición operan de forma más segura los convertidores Grid following?

- 1. Cuando la red es pequeña y aislada y no hay referencias de frecuencia estables.
- 2. Cuando la red es fuerte y proporciona una referencia clara de frecuencia y voltaje.
- 3. Cuando no hay muchos generadores síncronos acoplados

uc3m Universidad Carlos III de Madrid

¿Cuál es una diferencia fundamental en la forma en que operan los convertidores Grid following y Grid forming?

- 1. Control dinámico de la corriente inyectada a red (Grid following) frente a establecer y regular activamente la tensión y frecuencia (Grid forming).
- 2. Los Grid forming no tienen capacidad de arranque en negro a diferencia de los Grid forming
- 3. Los Grid following no pueden regular tensión a diferencia de los Grid forming

¿Qué tipo de control permite arrancar en ausencia de tensión en la red?

- 1. Grid Following
- 2. Grid Forming
- 3. Grid starting

Señale la afirmación correcta sobre el lazo de sincronización de potencia activa de un convertidor Grid forming basado en control proporcional droop

- 1. Ajusta el ángulo de la tensión en función de las variaciones de potencia activa.
- 2. Mantiene fijo el angulo de la tensión en todo momento, sin relación con el intercambio de potencia activa.
- 3. Depende de un Phase-Locked Loop (PLL) externo para seguir la frecuencia de la red existente.

Señale la afirmación correcta sobre el lazo de sincronización de potencia activa de un convertidor Grid forming basado en la máquina sincrona virtual

- 1. Emula el comportamiento dinámico de un generador síncrono sintetizando mediante control su ecuación de oscilación.
- 2. Regula la potencia reactiva intercambiada sintetizando mediante control la ecuación de oscilación del generador síncrono.
- 3. El valor de la constante de inercia en este tipo de control es un parámetro físico de valor constante.

Señale la afirmación correcta sobre el control de tensión en convertidores:

- 1. El lazo de control de tensión habitualmente gestiona el módulo de la tensión del convertidor a través del ajuste de la potencia reactiva.
- 2. Los convertidores tipo Grid following no tienen capacidad para el control de tensión.
- 3. El lazo de control de tensión habitualmente gestiona el módulo de la tensión del convertidor a través del ajuste de la contante de inercia sintética.

Señale la afirmación correcta sobre los convertidores tipo Grid forming:

- 1. Tienen capacidad para emular inercia.
- 2. Solo pueden operar si no hay generadores síncronos conectados a la red.
- 3. Necesitan siempre de un PLL para sincronziarse con la red