_____________________________________________________________________________________
Introduction / basic concepts
Models for classification and regression
- Nearest neighbours
- Decision / regression trees and rules
Evaluation and Methodology
- Basic pipeline
- Model evaluation
- Hyper-parameter optimization
Large scale machine learning:
- MapReduce
- Spark (MLLIB / ML / Pyspark)
Methods for attributes:
- Feature selection / dimensionality reduction
- Feature transformation
Ensembles of models:
- Bagging / Random Forests
- Boosting / Gradient Boosting